
Conditional Random Fields as Recurrent Neural Networks

Shuai Zheng∗1, Sadeep Jayasumana*1, Bernardino Romera-Paredes1, Vibhav Vineet†1,2, Zhizhong Su3,
Dalong Du3, Chang Huang3, and Philip H. S. Torr1

1University of Oxford 2Stanford University 3Baidu Institute of Deep Learning

Abstract

Pixel-level labelling tasks, such as semantic segmenta-
tion, play a central role in image understanding. Recent ap-
proaches have attempted to harness the capabilities of deep
learning techniques for image recognition to tackle pixel-
level labelling tasks. One central issue in this methodology
is the limited capacity of deep learning techniques to de-
lineate visual objects. To solve this problem, we introduce
a new form of convolutional neural network that combines
the strengths of Convolutional Neural Networks (CNNs)
and Conditional Random Fields (CRFs)-based probabilistic
graphical modelling. To this end, we formulate mean-field
approximate inference for the Conditional Random Fields
with Gaussian pairwise potentials as Recurrent Neural Net-
works. This network, called CRF-RNN, is then plugged in
as a part of a CNN to obtain a deep network that has de-
sirable properties of both CNNs and CRFs. Importantly,
our system fully integrates CRF modelling with CNNs, mak-
ing it possible to train the whole deep network end-to-end
with the usual back-propagation algorithm, avoiding offline
post-processing methods for object delineation.

We apply the proposed method to the problem of seman-
tic image segmentation, obtaining top results on the chal-
lenging Pascal VOC 2012 segmentation benchmark.

1. Introduction

Low-level computer vision problems such as semantic
image segmentation or depth estimation often involve as-
signing a label to each pixel in an image. While the feature
representation used to classify individual pixels plays an im-
portant role in this task, it is similarly important to consider
factors such as image edges, appearance consistency and
spatial consistency while assigning labels in order to obtain
accurate and precise results.

Designing a strong feature representation is a key chal-

∗Authors contributed equally.
†Work conducted while authors at the University of Oxford.

lenge in pixel-level labelling problems. Work on this topic
includes: TextonBoost [52], TextonForest [51], and Ran-
dom Forest-based classifiers [50]. Recently, supervised
deep learning approaches such as large-scale deep Convolu-
tional Neural Networks (CNNs) have been immensely suc-
cessful in many high-level computer vision tasks such as
image recognition [31] and object detection [20]. This mo-
tivates exploring the use of CNNs for pixel-level labelling
problems. The key insight is to learn a strong feature rep-
resentation end-to-end for the pixel-level labelling task in-
stead of hand-crafting features with heuristic parameter tun-
ing. In fact, a number of recent approaches including the
particularly interesting works FCN [37] and DeepLab [10]
have shown a significant accuracy boost by adapting state-
of-the-art CNN based image classifiers to the semantic seg-
mentation problem.

However, there are significant challenges in adapting
CNNs designed for high level computer vision tasks such as
object recognition to pixel-level labelling tasks. Firstly, tra-
ditional CNNs have convolutional filters with large recep-
tive fields and hence produce coarse outputs when restruc-
tured to produce pixel-level labels [37]. Presence of max-
pooling layers in CNNs further reduces the chance of get-
ting a fine segmentation output [10]. This, for instance, can
result in non-sharp boundaries and blob-like shapes in se-
mantic segmentation tasks. Secondly, CNNs lack smooth-
ness constraints that encourage label agreement between
similar pixels, and spatial and appearance consistency of the
labelling output. Lack of such smoothness constraints can
result in poor object delineation and small spurious regions
in the segmentation output [59, 58, 32, 39].

On a separate track to the progress of deep learning
techniques, probabilistic graphical models have been devel-
oped as effective methods to enhance the accuracy of pixel-
level labelling tasks. In particular, Markov Random Fields
(MRFs) and its variant Conditional Random Fields (CRFs)
have observed widespread success in this area [32, 29] and
have become one of the most successful graphical models
used in computer vision. The key idea of CRF inference
for semantic labelling is to formulate the label assignment

1

ar
X

iv
:1

50
2.

03
24

0v
3 

 [
cs

.C
V

] 
 1

3 
A

pr
 2

01
6



problem as a probabilistic inference problem that incor-
porates assumptions such as the label agreement between
similar pixels. CRF inference is able to refine weak and
coarse pixel-level label predictions to produce sharp bound-
aries and fine-grained segmentations. Therefore, intuitively,
CRFs can be used to overcome the drawbacks in utilizing
CNNs for pixel-level labelling tasks.

One way to utilize CRFs to improve the semantic la-
belling results produced by a CNN is to apply CRF infer-
ence as a post-processing step disconnected from the train-
ing of the CNN [10]. Arguably, this does not fully harness
the strength of CRFs since it is not integrated with the deep
network. In this setup, the deep network is unaware of the
CRF during the training phase.

In this paper, we propose an end-to-end deep learn-
ing solution for the pixel-level semantic image segmenta-
tion problem. Our formulation combines the strengths of
both CNNs and CRF based graphical models in one uni-
fied framework. More specifically, we formulate mean-field
approximate inference for the dense CRF with Gaussian
pairwise potentials as a Recurrent Neural Network (RNN)
which can refine coarse outputs from a traditional CNN in
the forward pass, while passing error differentials back to
the CNN during training. Importantly, with our formula-
tion, the whole deep network, which comprises a traditional
CNN and an RNN for CRF inference, can be trained end-
to-end utilizing the usual back-propagation algorithm.

Arguably, when properly trained, the proposed network
should outperform a system where CRF inference is applied
as a post-processing method on independent pixel-level pre-
dictions produced by a pre-trained CNN. Our experimental
evaluation confirms that this indeed is the case. We evalu-
ate the performance of our network on the popular Pascal
VOC 2012 benchmark, achieving a new state-of-the-art ac-
curacy of 74.7%. Our source code and models are publicly
available 1.

2. Related Work

In this section we review approaches that make use of
deep learning and CNNs for low-level computer vision
tasks, with a focus on semantic image segmentation. A wide
variety of approaches have been proposed to tackle the se-
mantic image segmentation task using deep learning. These
approaches can be categorized into two main strategies.

The first strategy is based on utilizing separate mecha-
nisms for feature extraction, and image segmentation ex-
ploiting the edges of the image [2, 38]. One representative
instance of this scheme is the application of a CNN for the
extraction of meaningful features, and using superpixels to
account for the structural pattern of the image. Two repre-
sentative examples are [19, 38], where the authors first ob-

1https://github.com/torrvision/crfasrnn

tained superpixels from the image and then used a feature
extraction process on each of them. The main disadvantage
of this strategy is that errors in the initial proposals (e.g:
super-pixels) may lead to poor predictions, no matter how
good the feature extraction process is. Pinheiro and Col-
lobert [46] employed an RNN to model the spatial depen-
dencies during scene parsing. In contrast to their approach,
we show that a typical graphical model such as a CRF can
be formulated as an RNN to form a part of a deep network,
to perform end-to-end training combined with a CNN.

The second strategy is to directly learn a nonlinear model
from the images to the label map. This, for example, was
shown in [17], where the authors replaced the last fully con-
nected layers of a CNN by convolutional layers to keep spa-
tial information. An important contribution in this direction
is [37], where Long et al. used the concept of fully con-
volutional networks, and the notion that top layers obtain
meaningful features for object recognition whereas low lay-
ers keep information about the structure of the image, such
as edges. In their work, connections from early layers to
later layers were used to combine these cues. Bell et al. [5]
and Chen et al. [10, 41] used a CRF to refine segmentation
results obtained from a CNN. Bell et al. focused on material
recognition and segmentation, whereas Chen et al. reported
very significant improvements on semantic image segmen-
tation. In contrast to these works, which employed CRF
inference as a standalone post-processing step disconnected
from the CNN training, our approach is an end-to-end train-
able network that jointly learns the parameters of the CNN
and the CRF in one unified deep network.

Works that use neural networks to predict structured out-
put are found in different domains. For example, Do et
al. [14] proposed an approach to combine deep neural net-
works and Markov networks for sequence labeling tasks.
Jain et al. [26] has shown Convolutional Neural Networks
can perform well like MRFs/CRFs approaches in image
restoration application. Another domain which benefits
from the combination of CNNs and structured loss is hand-
writing recognition. In natural language processing, Yao
et al. [60] shows that the performance of an RNN-based
words tagger can be significantly improved by incorporat-
ing elements of the CRF model. In [6], the authors com-
bined a CNN with Hidden Markov Models for that purpose,
whereas more recently, Peng et al. [45] used a modified ver-
sion of CRFs. Related to this line of works, in [25] a joint
CNN and CRF model was used for text recognition on nat-
ural images. Tompson et al. [57] showed the use of joint
training of a CNN and an MRF for human pose estimation,
while Chen et al. [11] focused on the image classification
problem with a similar approach. Another prominent work
is [21], in which the authors express deformable part mod-
els, a kind of MRF, as a layer in a neural network. In our
approach, we cast a different graphical model as a neural

2



network layer.
A number of approaches have been proposed for au-

tomatic learning of graphical model parameters and joint
training of classifiers and graphical models. Barbu et al. [4]
proposed a joint training of a MRF/CRF model together
with an inference algorithm in their Active Random Field
approach. Domke [15] advocated back-propagation based
parameter optimization in graphical models when approxi-
mate inference methods such as mean-field and belief prop-
agation are used. This idea was utilized in [28], where a bi-
nary dense CRF was used for human pose estimation. Sim-
ilarly, Ross et al. [47] and Stoyanov et al. [54] showed how
back-propagation through belief propagation can be used to
optimize model parameters. Ross et al. [21], in particular
proposes an approach based on learning messages. Many
of these ideas can be traced back to [55], which proposes
unrolling message passing algorithms as simpler operations
that could be performed within a CNN. In a different setup,
Krähenbühl and Koltun [30] demonstrated automatic pa-
rameter tuning of dense CRF when a modified mean-field
algorithm is used for inference. An alternative inference ap-
proach for dense CRF, not based on mean-field, is proposed
in [61].

In contrast to the works described above, our approach
shows that it is possible to formulate dense CRF as an RNN
so that one can form an end-to-end trainable system for se-
mantic image segmentation which combines the strengths
of deep learning and graphical modelling.

After our initial publication of the technical report of this
work on arXiv.org, a number of independent works [49, 35]
appeared on arXiv.org presenting similar joint training ap-
proaches for semantic image segmentation.

3. Conditional Random Fields

In this section we provide a brief overview of Condi-
tional Random Fields (CRF) for pixel-wise labelling and
introduce the notation used in the paper. A CRF, used in
the context of pixel-wise label prediction, models pixel la-
bels as random variables that form a Markov Random Field
(MRF) when conditioned upon a global observation. The
global observation is usually taken to be the image.

Let Xi be the random variable associated to pixel i,
which represents the label assigned to the pixel i and
can take any value from a pre-defined set of labels L =
{l1, l2, . . . , lL}. Let X be the vector formed by the ran-
dom variables X1, X2, . . . , XN , where N is the number of
pixels in the image. Given a graph G = (V,E), where
V = {X1, X2, . . . , XN}, and a global observation (im-
age) I, the pair (I,X) can be modelled as a CRF charac-
terized by a Gibbs distribution of the form P (X = x|I) =
1

Z(I) exp(−E(x|I)). Here E(x) is called the energy of
the configuration x ∈ LN and Z(I) is the partition func-

Figure 1. A mean-field iteration as a CNN. A single iteration of
the mean-field algorithm can be modelled as a stack of common
CNN layers.

tion [33]. From now on, we drop the conditioning on I in
the notation for convenience.

In the fully connected pairwise CRF model of [29], the
energy of a label assignment x is given by:

E(x) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj), (1)

where the unary energy components ψu(xi) measure the
inverse likelihood (and therefore, the cost) of the pixel
i taking the label xi, and pairwise energy components
ψp(xi, xj) measure the cost of assigning labels xi, xj to
pixels i, j simultaneously. In our model, unary energies are
obtained from a CNN, which, roughly speaking, predicts la-
bels for pixels without considering the smoothness and the
consistency of the label assignments. The pairwise ener-
gies provide an image data-dependent smoothing term that
encourages assigning similar labels to pixels with similar
properties. As was done in [29], we model pairwise poten-
tials as weighted Gaussians:

ψp(xi, xj) = µ(xi, xj)

M∑

m=1

w(m)k
(m)
G (fi, fj), (2)

where each k(m)
G for m = 1, . . . ,M , is a Gaussian kernel

applied on feature vectors. The feature vector of pixel i,
denoted by fi, is derived from image features such as spatial
location and RGB values [29]. We use the same features as
in[29]. The function µ(., .), called the label compatibility
function, captures the compatibility between different pairs
of labels as the name implies.

Minimizing the above CRF energy E(x) yields the most
probable label assignment x for the given image. Since this
exact minimization is intractable, a mean-field approxima-
tion to the CRF distribution is used for approximate max-
imum posterior marginal inference. It consists in approxi-
mating the CRF distribution P (X) by a simpler distribution
Q(X), which can be written as the product of independent
marginal distributions, i.e., Q(X) =

∏
iQi(Xi). The steps

of the iterative algorithm for approximate mean-field infer-
ence and its reformulation as an RNN are discussed next.

3



Algorithm 1 Mean-field in dense CRFs [29], broken down
to common CNN operations.
Qi(l)← 1

Zi
exp (Ui(l)) for all i . Initialization

while not converged do
Q̃

(m)
i (l)←∑

j 6=i k
(m)(fi, fj)Qj(l) for all m

. Message Passing
Q̌i(l)←

∑
m w(m)Q̃

(m)
i (l)

. Weighting Filter Outputs
Q̂i(l)←

∑
l′∈L µ(l, l′)Q̌i(l

′)
. Compatibility Transform

Q̆i(l)← Ui(l)− Q̂i(l)
. Adding Unary Potentials

Qi ← 1
Zi

exp
(
Q̆i(l)

)

. Normalizing
end while

4. A Mean-field Iteration as a Stack of CNN
Layers

A key contribution of this paper is to show that the mean-
field CRF inference can be reformulated as a Recurrent
Neural Network (RNN). To this end, we first consider in-
dividual steps of the mean-field algorithm summarized in
Algorithm 1 [29], and describe them as CNN layers. Our
contribution is based on the observation that filter-based ap-
proximate mean-field inference approach for dense CRFs
relies on applying Gaussian spatial and bilateral filters on
the mean-field approximates in each iteration. Unlike the
standard convolutional layer in a CNN, in which filters are
fixed after the training stage, we use edge-preserving Gaus-
sian filters [56, 42], coefficients of which depend on the
original spatial and appearance information of the image.
These filters have the additional advantages of requiring a
smaller set of parameters, despite the filter size being po-
tentially as big as the image.

While reformulating the steps of the inference algorithm
as CNN layers, it is essential to be able to calculate error
differentials in each layer w.r.t. its inputs in order to be able
to back-propagate the error differentials to previous layers
during training. We also discuss how to calculate error dif-
ferentials with respect to the parameters in each layer, en-
abling their optimization through the back-propagation al-
gorithm. Therefore, in our formulation, CRF parameters
such as the weights of the Gaussian kernels and the label
compatibility function can also be optimized automatically
during the training of the full network.

Once the individual steps of the algorithm are broken
down as CNN layers, the full algorithm can then be for-
mulated as an RNN. We explain this in Section 5 after dis-
cussing the steps of Algorithm 1 in detail below. In Algo-
rithm 1 and the remainder of this paper, we use Ui(l) to
denote the negative of the unary energy introduced in the
previous section, i.e., Ui(l) = −ψu(Xi = l). In the con-

ventional CRF setting, this input Ui(l) to the mean-field al-
gorithm is obtained from an independent classifier.

4.1. Initialization

In the initialization step of the algorithm, the operation
Qi(l) ← 1

Zi
exp (Ui(l)), where Zi =

∑
l exp(Ui(l)), is

performed. Note that this is equivalent to applying a soft-
max function over the unary potentials U across all the la-
bels at each pixel. The softmax function has been exten-
sively used in CNN architectures before and is therefore
well known in the deep learning community. This operation
does not include any parameters and the error differentials
received at the output of the step during back-propagation
could be passed down to the unary potential inputs after per-
forming usual backward pass calculations of the softmax
transformation.

4.2. Message Passing

In the dense CRF formulation, message passing is imple-
mented by applying M Gaussian filters on Q values. Gaus-
sian filter coefficients are derived based on image features
such as the pixel locations and RGB values, which reflect
how strongly a pixel is related to other pixels. Since the
CRF is potentially fully connected, each filter’s receptive
field spans the whole image, making it infeasible to use a
brute-force implementation of the filters. Fortunately, sev-
eral approximation techniques exist to make computation
of high dimensional Gaussian filtering significantly faster.
Following [29], we use the Permutohedral lattice imple-
mentation [1], which can compute the filter response in
O(N) time, where N is the number of pixels of the im-
age [1].

During back-propagation, error derivatives w.r.t. the fil-
ter inputs are calculated by sending the error derivatives
w.r.t. the filter outputs through the same M Gaussian fil-
ters in reverse direction. In terms of permutohedral lattice
operations, this can be accomplished by only reversing the
order of the separable filters in the blur stage, while building
the permutohedral lattice, splatting, and slicing in the same
way as in the forward pass. Therefore, back-propagation
through this filtering stage can also be performed in O(N)
time. Following [29], we use two Gaussian kernels, a spa-
tial kernel and a bilateral kernel. In this work, for simplic-
ity, we keep the bandwidth values of the filters fixed. It
is also possible to use multiple spatial and bilateral kernels
with different bandwidth values and learn their optimal lin-
ear combination.

4.3. Weighting Filter Outputs

The next step of the mean-field iteration is taking a
weighted sum of theM filter outputs from the previous step,
for each class label l. When each class label is considered
individually, this can be viewed as usual convolution with

4



a 1 × 1 filter with M input channels, and one output chan-
nel. Since both inputs and the outputs to this step are known
during back-propagation, the error derivative w.r.t. the filter
weights can be computed, making it possible to automat-
ically learn the filter weights (relative contributions from
each Gaussian filter output from the previous stage). Er-
ror derivative w.r.t. the inputs can also be computed in the
usual manner to pass the error derivatives down to the previ-
ous stage. To obtain a higher number of tunable parameters,
in contrast to [29], we use independent kernel weights for
each class label. The intuition is that the relative impor-
tance of the spatial kernel vs the bilateral kernel depends on
the visual class. For example, bilateral kernels may have
on the one hand a high importance in bicycle detection, be-
cause similarity of colours is determinant; on the other hand
they may have low importance for TV detection, given that
whatever is inside the TV screen may have many different
colours.

4.4. Compatibility Transform

In the compatibility transform step, outputs from the pre-
vious step (denoted by Q̌ in Algorithm 1) are shared be-
tween the labels to a varied extent, depending on the com-
patibility between these labels. Compatibility between the
two labels l and l′ is parameterized by the label compatibil-
ity function µ(l, l′). The Potts model, given by µ(l, l′) =
[l 6= l′], where [.] is the Iverson bracket, assigns a fixed
penalty if different labels are assigned to pixels with simi-
lar properties. A limitation of this model is that it assigns
the same penalty for all different pairs of labels. Intuitively,
better results can be obtained by taking the compatibility
between different label pairs into account and penalizing
the assignments accordingly. For example, assigning labels
“person” and “bicycle” to nearby pixels should have a lesser
penalty than assigning labels “sky” and “bicycle”. There-
fore, learning the function µ from data is preferred to fixing
it in advance with Potts model. We also relax our compat-
ibility transform model by assuming that µ(l, l′) 6= µ(l′, l)
in general.

Compatibility transform step can be viewed as another
convolution layer where the spatial receptive field of the fil-
ter is 1 × 1, and the number of input and output channels
are both L. Learning the weights of this filter is equivalent
to learning the label compatibility function µ. Transferring
error differentials from the output of this step to the input
can be done since this step is a usual convolution operation.

4.5. Adding Unary Potentials

In this step, the output from the compatibility transform
stage is subtracted element-wise from the unary inputs U .
While no parameters are involved in this step, transferring
error differentials can be done trivially by copying the dif-
ferentials at the output of this step to both inputs with the

appropriate sign.

4.6. Normalization

Finally, the normalization step of the iteration can be
considered as another softmax operation with no parame-
ters. Differentials at the output of this step can be passed on
to the input using the softmax operation’s backward pass.

5. The End-to-end Trainable Network
We now describe our end-to-end deep learning system

for semantic image segmentation. To pave the way for this,
we first explain how repeated mean-field iterations can be
organized as an RNN.

5.1. CRF as RNN

In the previous section, it was shown that one iteration
of the mean-field algorithm can be formulated as a stack of
common CNN layers (see Fig. 1). We use the function fθ
to denote the transformation done by one mean-field iter-
ation: given an image I , pixel-wise unary potential values
U and an estimation of marginal probabilities Qin from the
previous iteration, the next estimation of marginal distribu-
tions after one mean-field iteration is given by fθ(U,Qin, I).
The vector θ = {w(m), µ(l, l

′
)},m ∈ {1, ...,M}, l, l′ ∈

{l1, ..., lL} represents the CRF parameters described in Sec-
tion 4.

Multiple mean-field iterations can be implemented by re-
peating the above stack of layers in such a way that each
iteration takesQ value estimates from the previous iteration
and the unary values in their original form. This is equiv-
alent to treating the iterative mean-field inference as a Re-
current Neural Network (RNN) as shown in Fig. 2. Using
the notation in the figure, the behaviour of the network is
given by the following equations where T is the number of
mean-field iterations:

H1(t) =

{
softmax(U), t = 0

H2(t− 1), 0 < t ≤ T, (3)

H2(t) = fθ(U,H1(t), I), 0 ≤ t ≤ T, (4)

Y (t) =

{
0, 0 ≤ t < T

H2(t), t = T.
(5)

We name this RNN structure CRF-RNN. Parameters of
the CRF-RNN are the same as the mean-field parameters
described in Section 4 and denoted by θ here. Since the cal-
culation of error differentials w.r.t. these parameters in a sin-
gle iteration was described in Section 4, they can be learnt
in the RNN setting using the standard back-propagation
through time algorithm [48, 40]. It was shown in [29] that
the mean-field iterative algorithm for dense CRF converges
in less than 10 iterations. Furthermore, in practice, after

5



Meanfield
Iteration

H2 =
fθ(U,H1, I)

I

U

Softmax
Normalization

G1

G2

YH2

H1

1

Figure 2. The CRF-RNN Network. We formulate the iterative
mean-field algorithm as a Recurrent Neural Network (RNN). Gat-
ing functions G1 and G2 are fixed as described in the text.

FCN CRF-RNN

Figure 3. The End-to-end Trainable Network. Schematic vi-
sualization of our full network which consists of a CNN and the
CNN-CRF network. Best viewed in colour.

about 5 iterations, increasing the number of iterations usu-
ally does not significantly improve results [29]. Therefore,
it does not suffer from the vanishing and exploding gradient
problem inherent to deep RNNs [7, 43]. This allows us to
use a plain RNN architecture instead of more sophisticated
architectures such as LSTMs in our network.

5.2. Completing the Picture

Our approach comprises a fully convolutional network
stage, which predicts pixel-level labels without consid-
ering structure, followed by a CRF-RNN stage, which
performs CRF-based probabilistic graphical modelling for
structured prediction. The complete system, therefore, uni-
fies strengths of both CNNs and CRFs and is trainable
end-to-end using the back-propagation algorithm [34] and
the Stochastic Gradient Descent (SGD) procedure. During
training, a whole image (or many of them) can be used as
the mini-batch and the error at each pixel output of the net-
work can be computed using an appropriate loss function
such as the softmax loss with respect to the ground truth
segmentation of the image. We used the FCN-8s architec-

ture of [37] as the first part of our network, which provides
unary potentials to the CRF. This network is based on the
VGG-16 network [53] but has been restructured to perform
pixel-wise prediction instead of image classification. The
complete architecture of our network, including the FCN-
8s part can be found in the appendix.

In the forward pass through the network, once the com-
putation enters the CRF-RNN after passing through the
CNN stage, it takes T iterations for the data to leave the
loop created by the RNN. Neither the CNN that provides
unary values nor the layers after the CRF-RNN (i.e., the
loss layers) need to perform any computations during this
time since the refinement happens only inside the RNN’s
loop. Once the output Y leaves the loop, next stages of the
deep network after the CRF-RNN can continue the forward
pass. In our setup, a softmax loss layer directly follows the
CRF-RNN and terminates the network.

During the backward pass, once the error differentials
reach the CRF-RNN’s output Y , they similarly spend T it-
erations within the loop before reaching the RNN input U
in order to propagate to the CNN which provides the unary
input. In each iteration inside the loop, error differentials
are computed inside each component of the mean-field it-
eration as described in Section 4. We note that unnecessar-
ily increasing the number of mean-field iterations T could
potentially result in the vanishing and exploding gradient
problems in the CRF-RNN. We, however, did not experi-
ence this problem during our experiments.

6. Implementation Details
In the present section we describe the implementation

details of the proposed network, as well as its training pro-
cess. The high-level architecture of our system, which was
implemented using the popular Caffe [27] deep learning li-
brary, is shown in Fig. 3. Complete architecture of the deep
network can be found in the appendix. The full source code
and the trained models of our approach will be made pub-
licly available.

We initialized the first part of the network using the pub-
licly available weights of the FCN-8s network [37]. The
compatibility transform parameters of the CRF-RNN were
initialized using the Potts model, and kernel width and
weight parameters were obtained from a cross-validation
process. We found that such initialization results in faster
convergence of training. During the training phase, param-
eters of the whole network were optimized end-to-end using
the back-propagation algorithm. In particular we used full
image training described in [37], with learning rate fixed at
10−13 and momentum set to 0.99. These extreme values of
the parameters were used since we employed only one im-
age per batch to avoid reaching memory limits of the GPU.

In all our experiments, during training, we set the num-
ber of mean-field iterations T in the CRF-RNN to 5 to avoid

6



vanishing/exploding gradient problems and to reduce the
training time. During the test time, iteration count was in-
creased to 10. The effect of this parameter value on the
accuracy is discussed in section 7.1.

Loss function During the training of the models that
achieved the best results reported in this paper, we used the
standard softmax loss function, that is, the log-likelihood
error function described in [30]. The standard metric used
in the Pascal VOC challenge is the average intersection over
union (IU), which we also use here to report the results. In
our experiments we found that high values of IU on the val-
idation set were associated to low values of the averaged
softmax loss, to a large extent. We also tried the robust log-
likelihood in [30] as a loss function for CRF-RNN training.
However, this did not result in increased accuracy nor faster
convergence.

Normalization techniques As described in Section 4,
we use the exponential function followed by pixel-wise nor-
malization across channels in several stages of the CRF-
RNN. Since this operation has a tendency to result in small
gradients with respect to the input when the input value is
large, we conducted several experiments where we replaced
this by a rectifier linear unit (ReLU) operation followed by
a normalization across the channels. Our hypothesis was
that this approach may approximate the original operation
adequately while speeding up the training due to improved
gradients. Furthermore, ReLU would induce sparsity on the
probability of labels assigned to pixels, implicitly pruning
low likelihood configurations, which could have a positive
effect. However, this approach did not lead to better re-
sults, obtaining 1% IU lower than the original setting per-
formance.

7. Experiments
We present experimental results with the proposed CRF-

RNN framework. We use these datasets: the Pascal VOC
2012 dataset, and the Pascal Context dataset. We use the
Pascal VOC 2012 dataset as it has become the golden stan-
dard to comprehensively evaluate any new semantic seg-
mentation approach in comparison to existing methods. We
also use the Pascal Context dataset to assess how well our
approach performs on a dataset with different characteris-
tics.

Pascal VOC Datasets

In order to evaluate our approach with existing methods un-
der the same circumstances, we conducted two main exper-
iments with the Pascal VOC 2012 dataset, followed by a
qualitative experiment.

In the first experiment, following [37, 38, 41], we used
a training set consisted of VOC 2012 training data (1464
images), and training and validation data of [23], which

Input Image Ground TruthCRF-RNNDeepLabFCN-8s

B-ground Aero plane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dining-Table Dog Horse

Motorbike Person Potted-Plant Sheep Sofa Train TV/Monitor

Figure 4. Qualitative results on the validation set of Pascal
VOC 2012. FCN [37] is a CNN-based model that does not em-
ploy CRF. Deeplab [10] is a two-stage approach, where the CNN
is trained first, and then CRF is applied on top of the CNN output.
Our approach is an end-to-end trained system that integrates both
CNN and CRF-RNN in one deep network. Best viewed in colour.

amounts to a total of 11,685 images. After removing the
overlapping images between VOC 2012 validation data and
this training dataset, we were left with 346 images from the
original VOC 2012 validation set to validate our models on.
We call this set the reduced validation set in the sequel. An-
notations of the VOC 2012 test set, which consists of 1456
images, are not publicly available and hence the final results
on the test set were obtained by submitting the results to the
Pascal VOC challenge evaluation server [18]. Regardless
of the smaller number of images, we found that the relative
improvements of the accuracy on our validation set were in
good agreement with the test set.

As a first step we directly compared the potential advan-
tage of learning the model end-to-end with respect to alter-
native learning strategies. These are plain FCN-8s without
applying CRF, and with CRF as a postprocessing method
disconnected from the training of FCN, which is compara-
ble to the approach described in [10] and [41]. The results
are reported in Table 1 and show a clear advantage of the
end-to-end strategy over the offline application of CRF as a
post-processing method. This can be attributed to the fact

7



that during the SGD training of the CRF-RNN, the CNN
component and the CRF component learn how to co-operate
with each other to produce the optimum output of the whole
network.

We then proceeded to compare our approach with all
state-of-the-art methods that used training data from the
standard VOC 2012 training and validation sets, and from
the dataset published with [22]. The results are shown in
Table 2, above the bar, and we can see that our approach
outperforms all competitors.

In the second experiment, in addition to the above train-
ing set, we used data from the Microsoft COCO dataset [36]
as was done in [41] and [12]. We selected images from
MS COCO 2014 training set where the ground truth seg-
mentation has at least 200 pixels marked with classes la-
bels present in the VOC 2012 dataset. With this selection,
we ended up using 66,099 images from the COCO dataset
and therefore a total of 66,099 + 11,685 = 77,784 training
images were used in the second experiment. The same re-
duced validation set was used in this second experiment as
well. In this case, we first fine-tuned the plain FCN-32s
network (without the CRF-RNN part) on COCO data, then
we built an FCN-8s network with the learnt weights and fi-
nally train the CRF-RNN network end-to-end using VOC
2012 training data only. Since the MS COCO ground truth
segmentation data contains somewhat coarse segmentation
masks where objects are not delineated properly, we found
that fine-tuning our model with COCO did not yield signif-
icant improvements. This can be understood because the
primary advantage of our model comes from delineating
the objects and improving fine segmentation boundaries.
The VOC 2012 training dataset therefore helps our model
learn this task effectively. The results of this experiment are
shown in Table 2, below the bar, and we see that our ap-
proach sets a new state-of-the-art on the VOC 2012 dataset.

Note that in both setups, our approach outperforms com-
peting methods due to the end-to-end training of the CNN
and CRF in the unified CRF-RNN framework. We also
evaluated our models on the VOC 2010, and VOC 2011 test
set (see Table 2). In all cases our method achieves the state-
of-the-art performance.

In order to have a qualitative evidence about how CRF-
RNN learns, we visualize the compatibility function learned
after the training stage of the CRF-RNN as a matrix repre-
sentation in Fig. 5. Element (i, j) of this matrix corresponds
to µ(i, j) defined earlier: a high value at (i, j) implies high
penalty for assigning label i to a pixel when a similar pixel
(spatially or appearance wise) is assigned label j. For exam-
ple we can appreciate that the learned compatibility matrix
assigns a low penalty to pairs of labels that tend to appear
together, such as [Motorbike, Person], and [Dining table,
Chair].

Method Without COCO With COCO
Plain FCN-8s 61.3 68.3

FCN-8s and CRF
disconnected

63.7 69.5

End-to-end training of
CRF-RNN

69.6 72.9

Table 1. Mean IU accuracy of our approach, CRF-RNN, compared
with similar methods, evaluated on the reduced VOC 2012 valida-
tion set.

Method
VOC 2010

test
VOC 2011

test
VOC 2012

test
BerkeleyRC [3] n/a 39.1 n/a
O2PCPMC [8] 49.6 48.8 47.8
Divmbest [44] n/a n/a 48.1
NUS-UDS [16] n/a n/a 50.0

SDS [23] n/a n/a 51.6
MSRA-

CFM [13]
n/a n/a 61.8

FCN-8s [37] n/a 62.7 62.2
Hypercolumn [24] n/a n/a 62.6

Zoomout [38] 64.4 64.1 64.4
Context-Deep-
CNN-CRF [35]

n/a n/a 70.7

DeepLab-
MSc [10]

n/a n/a 71.6

Our method
w/o COCO 73.6 72.4 72.0

BoxSup [12] n/a n/a 71.0
DeepLab [10,

41]
n/a n/a 72.7

Our method
with COCO 75.7 75.0 74.7

Table 2. Mean IU accuracy of our approach, CRF-RNN, com-
pared to the other approaches on the Pascal VOC 2010-2012 test
datasets. Methods from the first group do not use MS COCO data
for training. The methods from the second group use both COCO
and VOC datasets for training.

Pascal Context Dataset

We conducted an experiment on the Pascal Context dataset
[39], which differs from the previous one in the larger num-
ber of classes considered, 59. We used the provided parti-
tions of training and validation sets, and the obtained results
are reported in Table 3.

Method O2P [8] CFM [13]
FCN-
8s [37]

CRF-
RNN

Mean IU 18.1 34.4 37.78 39.28
Table 3. Mean IU accuracy of our approach, CRF-RNN, evaluated
on the Pascal Context validation set.

8



 

 

 

 

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0.0

-1.0

-0.5

B-Ground

Aeroplane

Bicycle

Bird

Boat

Bus

Car

Cat

Chair

Cow
Dining-Table

Dog

Horse

Motorbike

Person

PottlePlant

Sheep

Sofa

Train

TV/Monitor

Bottle

B
-G

ro
u

n
d

A
e
ro

p
la

n
e

B
ic

y
c
le

B
ir

d

B
o

a
t

B
u

s

C
a
r

C
a
t

C
h

a
ir

C
o

w
D

in
in

g
-T

a
b

le

D
o

g

H
o

rs
e

M
o

to
rb

ik
e

P
e
rs

o
n

P
o

tt
le

P
la

n
t

S
h

e
e
p

S
o

fa

T
ra

in

T
V

/M
o

n
it

o
r

B
o

tt
le

Figure 5. Visualization of the learnt label compatibility ma-
trix. In the standard Potts model, diagonal entries are equal to−1,
while off-diagonal entries are zero. These values have changed af-
ter the end-to-end training of our network. Best viewed in colour.

7.1. Effect of Design Choices

We performed a number of additional experiments on the
Pascal VOC 2012 validation set described above to study
the effect of some design choices we made.

We first studied the performance gains attained by our
modifications to the CRF over the CRF approach proposed
by [29]. We found that using different filter weights for dif-
ferent classes improved the performance by 1.8 percentage
points, and that introducing the asymmetric compatibility
transform further boosted the performance by 0.9 percent-
age points.

Regarding the RNN parameter iteration count T , incre-
menting it to T = 10 during the test time, from T = 5
during the train time, produced an accuracy improvement
of 0.2 percentage points. Setting T = 10 also during train-
ing reduced the accuracy by 0.7 percentage points. We be-
lieve that this might be due to a vanishing gradient effect
caused by using too many iterations. In practice that leads
to the first part of the network (the one producing unary po-
tentials) receiving a very weak error gradient signal during
training, thus hampering its learning capacity.

End-to-end training after the initialization of CRF pa-
rameters improved performance by 3.4 percentage points.
We also conducted an experiment where we froze the FCN-
8s part and fine-tuned only the RNN part (i.e., CRF param-
eters). It improved the performance over initialization by
only 1 percentage point. We therefore conclude that end-to-
end training significantly contributed to boost the accuracy
of the system.

Treating each iteration of mean-field inference as an in-
dependent step with its own parameters, and training end-

to-end with 5 such iterations yielded a final mean IU score
of only 70.9, supporting the hypothesis that the recurrent
structure of our approach is important for its success.

8. Conclusion
We presented CRF-RNN, an interpretation of dense

CRFs as Recurrent Neural Networks. Our formulation
fully integrates CRF-based probabilistic graphical mod-
elling with emerging deep learning techniques. In partic-
ular, the proposed CRF-RNN can be plugged in as a part
of a traditional deep neural network: It is capable of pass-
ing on error differentials from its outputs to inputs dur-
ing back-propagation based training of the deep network
while learning CRF parameters. We demonstrate the use
of this approach by utilizing it for the semantic segmenta-
tion task: we form an end-to-end trainable deep network
by combining a fully convolutional neural network with the
CRF-RNN. Our system achieves a new state-of-the-art on
the popular Pascal VOC segmentation benchmark. This im-
provement can be attributed to the uniting of the strengths
of CNNs and CRFs in a single deep network.

In the future, we plan to investigate the advan-
tages/disadvantages of restricting the capabilities of the
RNN part of our network to mean-field inference of dense
CRF. A sensible baseline to the work presented here would
be to use more standard RNNs (e.g. LSTMs) that learn to
iteratively improve the input unary potentials to make them
closer to the ground-truth.

Acknowledgement This work was supported by grants
Leverhulme Trust, EPSRC EP/I001107/2 and ERC 321162-
HELIOS. We thank the Caffe team, Baidu IDL, and the Ox-
ford ARC team for their support. We gratefully acknowl-
edge GPU donations from NVIDIA.

References
[1] A. Adams, J. Baek, and M. A. Davis. Fast high-

dimensional filtering using the permutohedral lattice.
Computer Graphics Forum, 29(2):753–762, 2010.

[2] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bour-
dev, and J. Malik. Semantic segmentation using re-
gions and parts. In IEEE CVPR, 2012.

[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Con-
tour detection and hierarchical image segmentation.
IEEE TPAMI, 33(5):898–916, 2011.

[4] A. Barbu. Training an active random field for real-
time image denoising. IEEE TIP, 18(11):2451–2462,
2009.

[5] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Mate-
rial recognition in the wild with the materials in con-
text database. In IEEE CVPR, 2015.

9



[6] Y. Bengio, Y. LeCun, and D. Henderson. Globally
trained handwritten word recognizer using spatial rep-
resentation, convolutional neural networks, and hid-
den markov models. In NIPS, pages 937–937, 1994.

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 1994.

[8] J. Carreira, R. Caseiro, J. Batista, and C. Sminchis-
escu. Free-form region description with second-order
pooling. IEEE TPAMI, 2014.

[9] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-
man. Return of the devil in the details: Delving deep
into convolutional nets. In BMVC, 2014.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
and A. L. Yuille. Semantic image segmentation with
deep convolutional nets and fully connected crfs. In
ICLR, 2015.

[11] L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Ur-
tasun. Learning deep structured models. In ICLRW,
2015.

[12] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bound-
ing boxes to supervise convolutional networks for se-
mantic segmentation. In arXiv:1503.01640, 2015.

[13] J. Dai, K. He, and J. Sun. Convolutional feature mask-
ing for joint object and stuff segmentation. In IEEE
CVPR, 2015.

[14] T.-M.-T. Do and T. Artieres. Neural conditional ran-
dom fields. In NIPS, 2010.

[15] J. Domke. Learning graphical model parameters
with approximate marginal inference. IEEE TPAMI,
35(10):2454–2467, 2013.

[16] J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards
unified object detection and semantic segmentation. In
ECCV, 2014.

[17] D. Eigen, C. Puhrsch, and R. Fergus. Depth map pre-
diction from a single image using a multi-scale deep
network. In NIPS, 2014.

[18] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal vi-
sual object classes challenge: A retrospective. IJCV,
111(1):98–136, 2015.

[19] C. Farabet, C. Couprie, L. Najman, and Y. Le-
Cun. Learning hierarchical features for scene labeling.
IEEE TPAMI, 2013.

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
semantic segmentation. In IEEE CVPR, 2014.

[21] R. Girshick, F. Iandola, T. Darrell, and J. Malik. De-
formable part models are convolutional neural net-
works. In CVPR, 2015.

[22] B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and
J. Malik. Semantic contours from inverse detectors. In
IEEE ICCV, 2011.

[23] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik.
Simultaneous detection and segmentation. In ECCV,
2014.

[24] B. Hariharan, P. Arbelaez, R. Girshick, and J. Ma-
lik. Hypercolumns for object segmentation and fine-
grained localization. In IEEE CVPR, 2015.

[25] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman. Deep structured output learning for uncon-
strained text recognition. In ICLR, 2015.

[26] V. Jain, J. F. Murray, F. Roth, S. C. Turaga, V. P.
Zhigulin, K. L. Briggman, M. Helmstaedter, W. Denk,
and H. S. Seung. Supervised learning of image
restoration with convolutional networks. In IEEE
ICCV, 2007.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
In ACM Multimedia, pages 675–678, 2014.

[28] M. Kiefel and P. V. Gehler. Human pose estmation
with fields of parts. In ECCV, 2014.

[29] P. Krähenbühl and V. Koltun. Efficient inference in
fully connected crfs with gaussian edge potentials. In
NIPS, 2011.

[30] P. Krähenbühl and V. Koltun. Parameter learning
and convergent inference for dense random fields. In
ICML, 2013.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In NIPS, 2012.

[32] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. As-
sociative hierarchical crfs for object class image seg-
mentation. In IEEE ICCV, 2009.

[33] J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML,
2001.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[35] G. Lin, C. Shen, I. Reid, and A. van dan Hengel. Effi-
cient piecewise training of deep structured models for
semantic segmentation. In arXiv:1504.01013, 2015.

[36] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Gir-
shick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick,
and P. Dollar. Microsoft coco: Common objects in
context. In arXiv:1405.0312, 2014.

10



[37] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. In IEEE
CVPR, 2015.

[38] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich.
Feedforward semantic segmentation with zoom-out
features. In IEEE CVPR, 2015.

[39] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee,
S. Fidler, R. Urtasun, and A. Yuille. The role of con-
text for object detection and semantic segmentation in
the wild. In IEEE CVPR, 2014.

[40] M. C. Mozer. Backpropagation. chapter A Fo-
cused Backpropagation Algorithm for Temporal Pat-
tern Recognition. L. Erlbaum Associates Inc., 1995.

[41] G. Papandreou, L.-C. Chen, K. Murphy, and A. L.
Yuille. Weakly- and semi-supervised learning of
a dcnn for semantic image segmentation. In
arXiv:1502.02734, 2015.

[42] S. Paris and F. Durand. A fast approximation of the bi-
lateral filter using a signal processing approach. IJCV,
81(1):24–52, 2013.

[43] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. On
the difficulty of training recurrent neural networks. In
ICML, 2013.

[44] G. S. Payman Yadollahpour, Dhruv Batra. Discrimi-
native re-ranking of diverse segmentations. In IEEE
CVPR, 2013.

[45] J. Peng, L. Bo, and J. Xu. Conditional neural fields.
In NIPS, 2009.

[46] P. H. O. Pinheiro and R. Collobert. Recurrent convo-
lutional neural networks for scene labeling. In ICML,
2014.

[47] S. Ross, D. Munoz, M. Hebert, and J. A. Bag-
nell. Learning message-passing inference machines
for structured prediction. In IEEE CVPR, 2011.

[48] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Neurocomputing: Foundations of research. chapter
Learning Internal Representations by Error Propaga-
tion. MIT Press, 1988.

[49] A. G. Schwing and R. Urtasun. Fully connected deep
structured networks. In arXiv:1503.02351, 2015.

[50] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp,
M. Finocchio, R. Moore, A. Kipman, and A. Blake.
Real-time human pose recognition in parts from sin-
gle depth images. In IEEE CVPR, 2011.

[51] J. Shotton, M. Johnson, and R. Cipolla. Semantic tex-
ton forests for image categorization and segmentation.
In IEEE CVPR, 2008.

[52] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Tex-
tonboost for image understanding: Multi-class object

recognition and segmentation by jointly modeling tex-
ture, layout, and context. IJCV, 81(1):2–23, 2009.

[53] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In
arXiv:1409.1556, 2014.

[54] V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk
minimization of graphical model parameters given ap-
proximate inference, decoding, and model structure.
In AISTATS, 2011.

[55] S. C. Tatikonda and M. I. Jordan. Loopy belief prop-
agation and gibbs measures. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial In-
telligence, 2002.

[56] C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In IEEE CVPR, 1998.

[57] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint
training of a convolutional network and a graphical
model for human pose estimation. In NIPS, 2014.

[58] Z. Tu. Auto-context and its application to high-level
vision tasks. In IEEE CVPR, 2008.

[59] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image
parsing: Unifying segmentation, detection, and recog-
nition. IJCV, 63(2):113–140, 2005.

[60] K. Yao, B. Peng, G. Zweig, D. Yu, X. Li, and F. Gao.
Recurrent conditional random field for language un-
derstanding. In ICASSP, 2014.

[61] Y. Zhang and T. Chen. Efficient inference for fully-
connected crfs with stationarity. In CVPR, 2012.

11



Methods trained with COCO Mean IU
Our method 74.7 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6
DeepLab[10, 41] 72.7 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85.0 29.3
BoxSup[12] 71.0 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5
Methods trained w/o COCO
Our method trained w/o COCO 72.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4
DeepLab-MSc-CRF-LargeFOV[10] 71.6 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7
Context Deep CNN CRF[35] 70.7 87.5 37.7 75.8 57.4 72.3 88.4 82.6 80.0 33.4
Zoomout[38] 64.4 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4
Hypercolumn[24] 62.6 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9
FCN-8s[37] 62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4
MSRA CFM[13] 61.8 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0
SDS[23] 51.6 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8
NUS UDS [16] 50.0 67.0 24.5 47.2 45.0 47.9 65.3 60.6 58.5 15.5
TTIC-divmbest-rerank[44] 48.1 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6
BONN O2PCPMC FGT SEGM [8] 47.8 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2

Methods trained with COCO
Our method 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1
DeepLab[10, 41] 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1
BoxSup[12] 76.2 62.6 79.3 76.1 82.1 81.3 57.0 78.2 55.0 72.5 68.1
Methods trained w/o COCO
Our method trained w/o COCO 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1
DeepLab-MSc-CRF-LargeFOV [10] 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7
Context Deep CNN CRF[35] 71.5 55.0 79.3 78.4 81.3 82.7 56.1 79.8 48.6 77.1 66.3
TTI zoomout 16[38] 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3
Hypercolumn[24] 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4
FCN-8s[37] 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1
MSRA CFM[13] 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5
SDS[23] 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5
NUS UDS[16] 50.8 37.4 45.8 59.9 62.0 52.7 40.8 48.2 36.8 53.1 45.6
TTIC-divmbest-rerank[44] 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8
BONN O2PCPMC FGT SEGM[8] 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6

Table 4. Intersection over Union (IU) accuracy of our approach, CRF-RNN, compared to the other state-of-the-art approaches on the Pascal
VOC 2012 test set. Scores for other methods were taken the results published by the original authors. The symbols are from Chatfield et
al. [9].

12



Input Image CRF-RNN Ground Truth

B
-g

ro
u

n
d

A
e

ro
 p

la
n

e
B

ic
y
c
le

B
ir
d

B
o

a
t

B
o

tt
le

B
u

s

C
a

r
C

a
t

C
h

a
ir

C
o

w
D

in
in

g
-T

a
b
le

D
o

g
H

o
rs

e

M
o
to

rb
ik

e
P

e
rs

o
n

P
o
tt

e
d
-P

la
n
t

S
h

e
e

p
S

o
fa

T
ra

in
T

V
/M

o
n
it
o
r

Figure 6. Typical good quality segmentation results I. Illustration of sample results on the validation set of the Pascal VOC 2012 dataset.
Note that in some cases our method is able to pick correct segmentations that are not marked correctly in the ground truth. Best viewed in
colour.

13



Input Image CRF-RNN Ground Truth

B
-g

ro
u

n
d

A
e

ro
 p

la
n

e
B

ic
y
c
le

B
ir
d

B
o

a
t

B
o

tt
le

B
u

s

C
a

r
C

a
t

C
h

a
ir

C
o

w
D

in
in

g
-T

a
b
le

D
o

g
H

o
rs

e

M
o
to

rb
ik

e
P

e
rs

o
n

P
o
tt

e
d
-P

la
n
t

S
h

e
e

p
S

o
fa

T
ra

in
T

V
/M

o
n
it
o
r

Figure 7. Typical good quality segmentation results II. Illustration of sample results on the validation set of the Pascal VOC 2012 dataset.
Note that in some cases our method is able to pick correct segmentations that are not marked correctly in the ground truth. Best viewed in
colour.

14



Input Image CRF-RNN Ground Truth

B
-g

ro
u

n
d

A
e

ro
 p

la
n

e
B

ic
y
c
le

B
ir
d

B
o

a
t

B
o

tt
le

B
u

s

C
a

r
C

a
t

C
h

a
ir

C
o

w
D

in
in

g
-T

a
b
le

D
o

g
H

o
rs

e

M
o
to

rb
ik

e
P

e
rs

o
n

P
o
tt

e
d
-P

la
n
t

S
h

e
e

p
S

o
fa

T
ra

in
T

V
/M

o
n
it
o
r

Figure 8. Failure cases I. Illustration of sample failure cases on the validation set of the Pascal VOC 2012 dataset. Best viewed in colour.

15



Input Image CRF-RNN Ground Truth

B
-g

ro
u

n
d

A
e

ro
 p

la
n

e
B

ic
y
c
le

B
ir
d

B
o

a
t

B
o

tt
le

B
u

s

C
a

r
C

a
t

C
h

a
ir

C
o

w
D

in
in

g
-T

a
b
le

D
o

g
H

o
rs

e

M
o
to

rb
ik

e
P

e
rs

o
n

P
o
tt

e
d
-P

la
n
t

S
h

e
e

p
S

o
fa

T
ra

in
T

V
/M

o
n
it
o
r

Figure 9. Failure cases II. Illustration of sample failure cases on the validation set of the Pascal VOC 2012 dataset. Best viewed in colour.

16



B-ground Aero plane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dinging-table Dog Horse

Motorbike Person Potted-Plant Sheep Sofa Train TV/Monitor

Input Image Ground TruthCRF-RNNDeepLabFCN-8s

B-ground Aero plane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dining-Table Dog Horse

Motorbike Person Potted-Plant Sheep Sofa Train TV/Monitor

Figure 10. Qualitative comparison with the other approaches. Sample results with our method on the validation set of the Pascal VOC
2012 dataset, compared with previous state-of-the-art methods. Segmentation results with DeepLap approach were reproduced from the
original publication. Best viewed in colour.

17


